§ 4.3 Computation of the Kolmogrov-Sinai's entropy

· Recull that for a MPS (X, B, H, T), the entropy of T wint µ is defined by

 $h_{\mu}(T) = \sup h_{\mu}(T, \mathfrak{B}),$ where D ranges over all finite partitions of X, and  $\mathcal{A}_{\mu}(T,\mathfrak{D}):=\lim_{n\to\infty}\mathcal{H}_{\mu}(\mathfrak{D}\vee T\mathfrak{D}\vee\dots\vee T^{(n-1)}\mathfrak{D}).$ 

Below we give a useful proposition.

Prop. 4.6. Let T: X > X be a cts map on a compact metric space and that Dn is a sequence of partitions with diam Dn > 0. Then fr(T) = lim fr(Ti Dn)

The proof of the prop. is based on several lemmas.

Lem 4.7. Let X be a compact metric space, and let  $\mu$  be a Borel prob. measure on X. Let  $G = \{C_1, \dots, C_n\}$  be a Borel partition of X. Suppose that  $\{\mathcal{D}_m\}_{m=1}^\infty$  be

be a Borel partition of X. Suppose that {Dm} m=1 be a sequence of partitions such that

 $\operatorname{diam} \mathfrak{D}_{m} := \max_{D \in \mathfrak{D}_{m}} \operatorname{diam} D \to 0 \quad \text{as} \quad m \to \infty.$ 

Then 3 partitions  $\{E_1^m, ..., E_n^m\}$  so that

1. each  $E_i^m$  is a union of members of  $\mathcal{D}_m$ 2.  $\lim_{m \to \infty} \mu\left(E_i^m \Delta C_i\right) = 0$  for each i.

Pf. Pick compact  $K_1$ ,  $K_2$ , ...,  $K_n$  with  $K_i \subset C_i$  and  $\mu(C_i \setminus k_i) < \epsilon$ .

Let  $S = \inf_{i \neq j} d(K_i, K_j)$ . Consider m such that diam  $D_m < \frac{8}{2}$ .

Divide the elements DE Dm into groups whose

Unions are  $E_1^m$ ,  $E_2^m$ , ...,  $E_n^m$  so that  $D \in E_1^m$  if

Dn  $K_i \neq \emptyset$ . As diam  $\mathfrak{D}_m < \S$ , any  $D \in \mathfrak{D}_m$  intersects at most one  $K_i$ . Put a D Ritting no  $K_i$  in any  $E_i^m$  as you like. Then  $E_i^m \supseteq K_i$ , and  $\mu\left(E_i^m \triangle C_i\right) = \mu\left(C_i \setminus E_i^m\right) + \mu\left(E_i^m \setminus C_i\right)$   $\leq \mu\left(C_i \setminus K_i\right) + \mu\left(X \setminus \bigcup_{i=1}^n K_i\right)$   $\leq E + n \epsilon$ 

= (n+1)£.

Let \$>0 and G be a finite Borel partition. There

is \$>0 such that  $H_{\mu}(G|B) < \varepsilon$  whener Bis a partition with diam  $(B) < \varepsilon$ .

Lem 4.8 Let X be a compact metric space and  $\mu \in \mathcal{P}(X)$ .

Pf. Let  $G = \{C_1, \dots, C_n\}$ . In Lem 4.7, we have shown that for any d > 0, one could find S > 0 such that

$$\mathcal{E} = \left\{ \text{Ei, ..., En} \right\} \subset \mathfrak{B}$$

$$\forall \text{(i.e. each E; is a Union of members in } \mathfrak{B} \text{)}.$$

$$\mu\left(\text{Ei} \Delta C_i\right) < \lambda \text{.}$$

Now

$$= \sum_{i} \sum_{j} \mu(E_{i}) \phi\left(\frac{\mu(C_{j} \cap E_{i})}{\mu(E_{i})}\right)$$

on 
$$\mu(E_i)$$
 and  $\mu(C_i \cap E_i)$ 

and vanishes if 
$$\mu(G_i \cap E_i) = \delta_{i,j} \cdot \mu(E_i)$$
.

$$S_{ij} = \begin{cases} 1 & i \leq i = j \\ 0 & i \leq i \neq j \end{cases}.$$

M

Hence when d is small,

Clearly 
$$h_{\mu}(T) \ge \limsup_{n \to \infty} h(T, \mathfrak{D}_n)$$
.

For any partition G,

pf of prop 46.

$$f_{\mu}(T,G) \leq f_{\mu}(T,\mathfrak{D}_{n}) + H_{\mu}(G|\mathfrak{D}_{n})$$
 (by lem 4.5)  
By lem 4.8,

By Lem 4.8,  

$$h_{\mu}(\tau,G) \leq \lim_{n \to \infty} h_{\mu}(\tau,D_n)$$
.

Hence
$$R_{\mu}(T,G) \leq \lim_{n \to \infty} R_{\mu}(T,\partial n).$$
Hence
$$R_{\mu}(T,G) \leq \lim_{n \to \infty} R_{\mu}(T,G) \leq \lim_{n \to \infty} R_{\mu}(T,\partial n).$$

Hence
$$R_{\mu}(\tau) = \sup_{G} R_{\mu}(\tau, G) \leq \liminf_{n \to \infty} h_{\mu}(\tau, \mathcal{P}_n)$$

Def. A mapping T: X > X is called expansive

if  $\exists \Sigma > 0$  such that

 $d(T^{k}, T^{k}) \leq \varepsilon$  for all  $k \geq 0 \Rightarrow x = y$ .

Prop. 4.9 Suppose  $T: X \rightarrow X$  is a cts transformation

on a compact metric space with expansive constant  $\epsilon$ . Then  $R_{\mu}(T) = R_{\mu}(T, \theta)$  whenever cliam  $\theta < \epsilon$ .

We claim diam 
$$(\mathfrak{D}_n) \rightarrow 0$$
.

Pf. Let An: = DVTDV···VT D.

To see this, suppose on the contrary that diam  $(\mathcal{D}_n) \neq 0$ .

Then  $\exists (n_k) \uparrow \infty \xrightarrow{\times n_k} \forall n_k \in X \text{ s.t. } d(x_{n_k}, y_{n_k}) > 0$ 

Then 
$$\exists (n_k) \uparrow \infty, \quad x_{n_k}, \quad y_{n_k} \in X \quad \text{s.t.} \quad d(x_{n_k}, y_{n_k}) > S,$$

$$d(T^i x_{n_k}, T^i y_{n_k}) \leq \varepsilon \quad \text{for} \quad 0 \leq i \leq n_k - 1$$

WLOG, assume  $X_{n_k} \rightarrow x$ ,  $Y_{n_k} \rightarrow Y$ .

Then  $d(x,y) > \xi$ ,  $d(T'x, T'y) \leq \xi, \forall i \geq 0 \Rightarrow x = y$  by expansive mess Leading to a contradiction.

Since Dn > 0,

$$R_{\mu}(T) = \lim_{n \to \infty} R_{\mu}(T, \mathcal{D}_n)$$

However,  $R_{\mu}(T, D_n) = R_{\mu}(T, D)$  by Lem 4.5.

Hence  $h_{\mu}(\tau) = h_{\mu}(\tau, \vartheta)$ .

Consider the left shift  $S: \Sigma \to \Sigma$ , where  $\Sigma = \{1, \dots, k\}^{UV}$  is the one-sided full shift space.

Then of is expansive with constant 1/2.

• The one-sided 
$$(P_1, \dots, P_R)$$
 -shift over  $\Sigma = \{1, \dots, k\}^{N}$   
thus entropy  $-\sum_{i=1}^{R} P_i \log P_i$